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We compare two approaches to the empirical logic of automata. The first, called 
partition logic (logic of microstatements), refers to experiments on individual 
automata. The second, the logic of simulation (logic of macrostatements), deals 
with ensembles of automata. 

I N T R O D U C T I O N  

The principal goal of this paper is to bring two approaches to the 
empirical logic of  automata into a coherent perspective. Two groups of 
researchers (K. Svozil and M. Schaller in Vienna, and A. A. Grib and R. R. 
Zapatrin in St. Petersburg) have approached this issue from different direc- 
tions. In this joint paper we investigate the connection between these two 
approaches. 

The paper is organized in the following way" in Section l the class of  
automata we are going to deal with is specified. In Section 2 the concept of  
the empirical logic of automata is specified. The approach taken by the Vienna 
group based on a partitioning of the set of automaton states is introduced in 
Section 3, and that of  the St. Petersburg group based on a closure operation 
on the set of inputs is described in Section 4. A comparison of the two 
approaches concludes the paper. 

1. A U T O M A T O N  M O D E L  

In this paper we deal with the specific class of automata called "normal- 
ized" and introduced in Grib and Zapatrin (1990). The main feature of  these 
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Fig. 1. The graph P(V, E). The set of vertices V = {1, 2, 3, 4}, the set of edges E = 

{(1, 2), (2, 3), (3, 4)}. 

automata is that they may be completely defined by a nonoriented graph P 
= (V, E), V being the set of vertices and E the set of edges. The states of 
the automaton correspond to the vertices of the graph P. We also assume the 
existence of a so-called final state 0. The inputs of  the automaton are in one- 
to-one correspondence with its states. One could think of applying an input 
v as checking the appropriate state. Now assume that the automaton is initially 
in state u (:/:0) and that an input v is applied. Then the transition ~: u ---> v 
takes place if and only if the vertices u, v are linked by an edge of the graph 
P, otherwise the automaton goes into the final state 0; i.e., 

( 0  if ( u , v ) ~ E  
~(u, v) := otherwise 

The two-valued output function depends on the resulting state. Its value is 
0 if the resulting state is the final state, and 1 if the resulting state is any 
other; i.e., 

{~ if ~(u,v)=/=0 
M~(u, v)) -= if ~(u, v) = 0 

As an example, consider the normalized automaton associated with the 
graph P drawn in Fig. 1. Suppose the automaton is prepared in the initial 
state corresponding to the vertex 1. Then, if we apply the input 1, the state 
of the automaton will not change, and it will output the symbol 1. If, starting 
from the same initial state 1, the input 2 is applied, the state of the automaton 
changes to 2, through the output value will still be 1. If, on the other hand, 
we apply any one of the inputs 3 or 4, then the automaton makes a transition 
to the final state 0 (since there is no edge between the initial vertex 1 and 
the vertices 3 and 4, respectively) and the output value will be 0. We shall 
return to this example in the discussion of the propositional structures below. 

2. E M P I R I C A L  L O G I C  OF AUTOMATA 

The motivation behind the investigations in this paper is the construction 
of primitive empirical statements or propositions about automata (Finkelstein 
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and Finkelstein, 1983). Such experimental statements form the basis of the 
formal investigation of the corresponding logics. In particular, there exist 
automata for which validation of one empirical statement makes impossible 
the validation of another empirical statement and vice versa, as first pointed 
out by Moore (1956). 

Thereby, one decisive feature of the setup is the intrinsic character of 
the measurement process: The automaton is treated as a black box with known 
description but unknown initial state. Automata experiments are conducted by 
applying an input sequence and observing the output sequence. 

In the above example, it is not necessary to input sequences containing 
more than one symbol, since the nonfinal states are not distinguished by the 
output function. 

3. MICROSTATEMENTS:  PARTITION L O G I C  

The conventional state identification problem (Moore, 1956; Conway, 
1971; Braver, 1984) is to obtain information about an unknown initial state. 
Thereby it is assumed that only a single automaton copy is available for 
inspection. That is, no second, identical example of the automaton can be 
used for further examination. Alternatively, one may think of it as choosing 
at random a single automaton from an ensemble of automata which differ 
only by their initial state. The task then is to find which was the initial state 
of the chosen automaton. 

The partition logic approach to finite automata study was introduced in 
Svozil (1993) and subsequently treated in Schaller and Svozil (1994, 1995, 
1996). There, statements about single automata of the following form p~ 
are considered: 

PA := "the state v of the automaton is in A" (1) 

where A is a subset of the set of automaton states. For any statement PA we 
can build its opposite ~-~, namely, 

PA := "the state v of the automaton is not in A" 

Let us try to characterize this state identification problem algebraically. 
Again, V denotes the set of automaton states. Now associate with any input 
v the set of automaton states such that any pair of states from any element 
of the partition are mutually indistinguishable. For normalized automata 
studied in this paper, this partition reduces to splitting the entire set of states 
V into two subsets, 

V = Vo U V~ (2) 

Vo = {w E Vl(v, w) r E} (3) 
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Vl = {w �9 Vl(v, w) e E} (4) 

where E stands for the set of edges of the graph P(V, E). Then, a property 
Pa of the form (1) is said to be testable if and only if the set A is contained 
in the partition (2) associated with some input. 

Now consider the entire collection of the sets of the form V0 and Vt in 
(2) for all possible inputs v. Note that for different inputs, the partitions (2) 
may coincide (cf. the example below). V0 may be thought of as the negation 
of Vt and vice versa. Therefore, each such pair forms a Boolean algebra 22. 
The propositional structure is then built from these algebras by pasting, i.e., by 
identifying their greatest and their least elements. The resulting propositional 
structures are the lattices MOn, where n stands for the number of different 
partitions (2). The partial order can be interpreted as logical implication " ~ "  
on the statements about a single automaton from the ensemble. This is why 
we call these statements microstatements. 

To take up the example mentioned earlier, consider the partitions pro- 
duced by all possible inputs v = 1, 2, 3, 4. They are 

v = 1: V =  {1, 2} U {3, 41 (5) 

v = 2 :  V =  {1,2,3} U {4} (6) 

v =  3: V =  {1} U {2,3,4} (7) 

v = 4 :  V =  {1,2} U {3,4} (8) 

Note that the inputs 1 and 4 produce the same partitions. The resulting 
propositional structure is drawn in Fig. 2. It should be emphasized that 
although the elements of the lattice associated with the partition logic are 
the subsets of the set of states V, the partial order relation ("implication ~ " )  
is weaker than the set-theoretic inclusion "C." For instance, we can see from 
the above example that {1} C {1, 2, 3}, but {1} ~ {l, 2, 3}. In general, 
the partial order relation always implies set inclusion but not vice versa. Only 
if two statements can be identified by the same experiment, i.e., only if both 

{I.2,3.4) 

11.2 {2,3,41 

Fig. 2. Lattice M03 of the intrinsic propositional calculus. 
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statements are simultaneously measurable, does the partial ordering coincide 
with set inclusion. 

4. M A C R O S T A T E M E N T S :  L O G I C  OF S I M U L A T I O N  

Another approach to the logic of finite automata was introduced in Grib 
and Zapatrin (1990, 1992). Unlike that giving rise to the partition logic 
described in the previous section, it assumes dealing with ensembles of 
automata rather than with a single pattern and therefore the notion of property 
is referred to the ensemble. This was the reason to call the statements arising 
in this approach macrostatements. 

Before describing the approach in general, we return to our example of 
an automaton. Suppose now that we have at our disposal two ensembles of 
such automata. The first is prepared in such a way that some of the constituent 
automata of the ensemble are in the state {1, 2, 3}. That is, initially, the 
automata from the first ensemble are either in state 1 or in state 2 or in state 
3. The second ensemble is prepared in the state {2, 3, 4}. That is, initially, 
the automata from the first ensemble are either in state 2 or in state 3 or in 
state 4. 

As before, only one experiment on each particular automaton from the 
ensemble can be carried out; from each individual automaton in the ensemble, 
only a single copy is available. 

We first perform experiments on the first ensemble. Suppose we have 
generated the protocol of a sufficiently large sequence of measurements of  
the results of  each input. The values of  the output function which can be 
observed are 0 and 1 for each input. 

Next, we deal with the second ensemble in a similar way. Again, looking 
into the protocol, we see that there are O's and l 's  as the result of  each input. 
Since we have made no particular choice of  the distribution of the initial 
states, we have to conclude that the two states of the ensemble described 
above are indistinguishable. 

However, assume that a third ensemble is prepared in the "pure" state 
associated with the activation of only the vertex 1. Then, analyzing the 
protocol, one finds that the output values corresponding to the input 3 are 
always 0. This makes the protocol differ from the protocols generated from 
the first two ensembles. Thus, we can distinguish the state of the third 
ensemble from the states of the first and second ensembles. 

We now give the rigorous definitions. With each subset A C V, we 
consider the statement about the ensemble of automata of the following 
form SA: 

Sa := "the state v of  each particular automaton is in A" (9) 
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For any statement s A we can build its opposite ~ ,  namely, 

sA "= "the state v of each particular automaton is n o t  in A" 

Then, a property sB of the form (9) is said to be t e s t a b l e  if and only if there 
exists a subset A C_ V such that 

S B = S A 

The motivation for this definition is the following. The outcome of the 
statistical experiment on the ensemble of automata is the protocol of the 
following form: 

input 1 0001110101 . . .  
input 2 1001010111 . . .  

an input the values of the output function 

The rows of the protocol containing the output values equal to 1 bring no 
essential information. Only the rows in which the values of the output function 
are always 0 contain information relevant to our purposes. That is the reason 
why the subsets having only O's in the appropriate line of the protocol are 
treated as testable within this approach. 

In our example, the only proper (i.e., :/:0, V) subsets which are in 
principle testable, are {1 }, {4}, {1, 2}, {3, 4}. For instance, if, on any input 
of 1, the output is always 0, then one can conclude that the automata in the 
ensemble are either in (micro-) state 3 or in (micro-) state 4; therefore the 
ensemble is in the macrostate denoted by {3, 4}. Since the partial order 
relation strictly follows set inclusion, the lattice of properties looks like the 
one drawn in Fig. 3. 

V 

{I.2t {3,4} 

{l} (4) 

Fig. 3. The diagram of testable properties. 
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5. C O N C L U D I N G  R E M A R K S  

Let us state the common features of our two approaches. 

Operationalistic. Just as in quantum measurements, an extrinsic view 
is assumed to be inaccessible. All we are allowed to do is to choose the input 
to be applied and then observe the output values. For instance, in order to 
measure the electron spin, we are not allowed to "screw open" the electron. 
Moreover, one cannot in general copy an (arbitrary number of) identical 
electrons from the single electrons taken from an ensemble. 

Mathematical. In both approaches, the collection of propositions is asso- 
ciated with a partially ordered set, whose elements are subsets of the set of 
states of  the automaton. 

Since our two approaches are based on different empirical setups, there 
are certain features in which of  our two approaches differ. 

Automaton model. The normalized automata used here are appropriate 
for the logical simulation of  macrostatements. They are assumed to have 
only two output values. With a different automaton model, to which the 
partition logic of microstatements is applicable, one obtains more general 
structures of microstatements than the lattices MOn. Examples of  such autom- 
aton models are Moore and Mealy-type automata having more than two 
output values and thus allowing for more than two elements in the partitions. 

Operationalistic 

�9 To formulate the microstatements (to which partition logic is applica- 
ble) the experiment is assumed to be carried out with a single 
automaton. 

�9 Macrostatements refer to ensembles of  automata. 

Mathematical 

�9 In partition logic, the structure of  the collection of properties is always 
a pasting of Boolean algebras. It may not even be a lattice (Svozil, 
1993, pp. 137-141). 

�9 The structure of the collection of  macroproperties is always a lattice 
with orthocomplementation. It is not necessarily orthomodular (Zapa- 
trin, 1995). 

�9 The collections of  subsets associated with testable microstatements 
and macrostatements do not in general include one another, but always 
overlap. The partial ordering of these subsets can be induced from 
both sorts of  propositional structures. For macrostatements, the partial 
order is exactly the set inclusion. As already pointed out, for micro- 
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statements the set inclusion implies the partial order only if both 
statements are simultaneously measurable (cf. Section 3). 
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